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Study of transients in the electron quantum transport by nonequilibrium Green’s function often requires an
explicit inclusion of correlations at a finite initial time. For processes embedded in a host process, a universal
treatment of the correlated initial conditions based on the formalism of partitioning in time allows to express
their self-energy including the “irregular” correlation part in terms of the known properties of the host process.
This unified formalism also yields the renormalized semigroup property for propagators and the reconstruction
equations for the particle correlation function. The Bogolyubov principle of the decay of correlations then
permits to buildup a theory of quantum transport equations with finite-time initial conditions.
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I. INTRODUCTION

This paper is devoted to closely related topics in the non-
equilibrium Green’s function �NGF� theory1–8 of nonequilib-
rium quantum dynamics, all stemming from the task of de-
scribing the short time transient processes in quantum
transport. The first question addressed here concerns the in-
fluence of the many-body initial state on the NGF.9–16 This
problem has been present in the NGF theory from the outset
and we outline the history of its resolution below. Our con-
tribution to these efforts is to employ the notion that a physi-
cally admissible initial state is an outcome of previous his-
tory �preparation�, and from this to find its role for the future
evolution.

Such description of a process with prescribed initial con-
ditions �ICs� at a finite time appears as a specific instance of
a general question, the second one posed in this paper: how
to formalize the notion of the past and the future with respect
to a selected instant ��the present� in the structure of NGF
formalism.

For this purpose, we introduce a technique we call the
partitioning in time, or time partitioning for brevity. This
name refers to the similarities with the usual partitioning in
the Hilbert space, also known as the downfolding method:17

the full NGF is expressed in terms of its time partitions, like
the future-future diagonal block, the past-future off-diagonal
block, etc., all defined with respect to the “present” as the
dividing time for partitioning.

The dividing time need not have a privileged position; the
case of the initial time is an exception. In the transport
theory, every instant of the running time separates the instan-
taneous future from the instantaneous past; the latter plays
the role of a gliding initial condition for the evolution of the
carrier distribution. The time partitioning equations can in
this case be identified with the so-called reconstruction equa-
tions which form a rigorous basis for developing the quan-
tum transport equations from the NGF point of view. This
will be the third topic discussed in the present paper. In the
case of finite-time transients considered here, however, both
types of dividing times �initial time and running time� enter
simultaneously and the theory is bound to take account of
this.

The initial time of a physical process distinguishes itself
among all possible dividing times not because it has been

subjectively chosen but because it typically represents a true
divide between the past—a completed preparatory stage—
and a commencing qualitatively different process in ques-
tion. This may correspond to the onset of an external field,
the case we consider in this paper. For theoretical investiga-
tions, an important, although artificial, case might be the
starting state of uncorrelated particles, with the interactions
suddenly turned on at the initial time. Yet another situation,
of a great generality and importance, corresponds to a sud-
den change in the environment of the system at the initial
time. In general, an open system is treated by NGF as being
a constituent part of a broader system which incorporates
also the environment consisting of baths, galvanic contacts,
particle reservoirs, etc.18 A sudden activation of, say, a ther-
mal contact to a bath, clearly is a severe disturbance of the
system, with fundamental changes in its boundary condi-
tions, conserving properties, and relaxation characteristics. A
paradigmatic model of a bath, the Caldeira-Leggett
model,19,20 has been used to study the dynamics of a system
suddenly joined with a bath in the seminal paper.21 The re-
search along these lines has continued ever since.20,22,23 So
far, the problem has defied the NGF treatment, however. The
situation is different with attaching leads to a small �mesos-
copic� electron system. Here, the NGF are technique of
choice and we have outlined in some detail the solution of
the transient behavior of a molecular bridge between two
infinite leads which are alternately connected and/or discon-
nected in a sudden fashion.24 This is an adaptation of the
famous model of Jauho et al.25 to include the switching ef-
fects. In our work,24 we have used already the basic concept
of the time partitioning in anticipation of the present paper.
A sequel containing a detailed numerical study is under
preparation.

At this place, we confine ourselves to these comments. A
related more extended discussion will be deferred to the final
part of the whole paper, where we will profitably link our
present results with an outlook to their future generalization.
Let us now concentrate on a characterization of the two
physical areas we study in this paper using the time parti-
tioning: the finite-time correlated initial conditions and the
quantum transport picture of the short-time transients.

To appreciate the problem of correlated initial conditions,
a brief historical remark may be useful. As shown in Eq. �1�,
the NGF may be defined in an usual manner for an arbitrary
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many body initial state involving all kinds of correlations.
Already the founders of the NGF method were aware, how-
ever, of the problem that for correlated initial conditions no
Wick theorem holds for the closed time path C. They circum-
vented it by letting the initial time tend to −� with the mo-
tivation that for the transport equations, the initial conditions
are not essential after elapse of an opening period. Early
attempts dealing with the finite-time initial conditions for
NGF include the work of Hall, Fujita, Nozières’ group and,
in particular, of Craig. These references are given in the key
paper by Danielewicz,9 who developed a comprehensive
treatment of the initial conditions coming back to the basic
concepts by Kadanoff and Baym. Starting from his work, a
technique has gradually been developed9,10,12 in which the
real time C loop is extended by a Matsubara-type imaginary
time period during which the correlated state is formed from
an auxiliary noncorrelated one. The perturbation expansion
of G is then performed along this augmented open time
“loop.” A fully general treatment extending the ideas of
Danielewicz is due to Wagner. He showed, in particular, that
the original notion of an analytical continuation between the
real and imaginary time axis is not needed.

In the Danielewicz-Wagner treatment, the initial time ap-
pears in the middle of the extended time contour, joining the
preparatory imaginary time interval with the “physical” real-
time domain. Our approach, as sketched above, employs a
similar idea. The initial time serves now to join together two
parts of a global “host” process, both taking place on the real
time axis: the preparation in the “past,” and the physical
process proper in the “future.” The underlying perturbation
scheme would now be the Keldysh expansion. We have
proposed24,26 to join both methods under the name of diach-
ronous techniques.

This allows to distinguish them from the alternative
approaches—beyond the scope of this paper—which should
be described as synchronous. They are represented by several
more recent studies made by people around the Rostock
group.11–16 The difficult average over a correlated initial
many-particle state is transformed to an expansion of the
NGF equations of motion in terms of a Bogoliubov-Born-
Green-Kirkwood-Yvon-type chain of equal-time correlation
functions for particle complexes. With a suitable termination
capturing the relevant reduced information about the corre-
lations, the NGF can be obtained.

The NGF describes adequately quantum transport arbi-
trarily far from equilibrium and driven by arbitrary external
fields. In particular, incorporating properly the initial condi-
tions at a finite initial time into the NGF, we fully capture the
desired characteristics of the ensuing transient processes in
terms of two-time correlation functions. We intend to discuss
the conditions for and the ways of reducing the theory to
equations for an electron distribution function of a single
time, akin to the quantum Boltzmann equations for the ex-
tended systems, or the generalized master equations for the
spatially restricted systems. The entire field of such quantum
transport equations is vast, of course, and the problem of fast
transients stands somewhat off its traditional mainstream.
Recently, it gains at importance, however.

We may contrast it with the case of quantum Boltzmann
equation. This equation is suited for an extended system un-

der the influence of fields smooth both in space and in time.
Regardless of the technique of deriving it, it is formally char-
acterized by use of Wigner variables and of a quasiclassical
expansion both in space and time. Most importantly, it is an
equation for the quasiparticle distribution function and the
properties of physical particles are obtained from a recon-
struction functional which is a part of the complete theory.
This approach started from the seminal work of Landau27

and its school2,28,29 and it continues flourishing.30–36 As a link
to the NGF approach followed here, we may cite the early
classics by Kadanoff and Baym.1 A reduction in the NGF
equations of motion to the Boltzmann equation has been
achieved there by a specific approximate factorization of the
particle correlation function, the so-called Kadanoff-Baym
Ansatz �KBA�. In this Ansatz, one of the factors is just the
sought for quasiparticle distribution.

Transients cannot be treated in the quasiclassical limit, at
least early after their onset and they generically fall into one
category with processes driven by fields which are not ex-
tremely slow in time, by rf waves or optical pulses, for ex-
ample. For the reduction NGF→quantum transport equation
in this case, the original KB Ansatz has been modified to the
so-called generalized KBA �GKBA�.4,37,38 This Ansatz has a
strictly causal structure and consists in factoring out of the
particle correlation function its “time diagonal,” the one-
particle density matrix. Thus it deals with the distribution of
bare particles, as does also the resulting quantum transport
equation. We have to ask about the validity of the Ansatz for
processes starting at a finite initial time. Bogolyubov has
postulated, as a corollary of his more general principle of the
decay of correlations, that the initial correlations die out
within a finite characteristic time, after which the system
enters its kinetic stage of evolution controlled by a quantum
transport equation for the single-particle distribution. This
conjecture has been verified in a number of particular cases.
Here, it is closely bound with the Ansatz validity and we will
discuss all these questions jointly. As pointed out above, the
formal tool for this is provided by the time partitioning equa-
tions. They can be cast into the form of reconstruction equa-
tions introduced in a different way already in Ref. 37 as an
exact counterpart of the approximate GKBA expression for
the particle correlation function. Presently, they will be gen-
eralized to processes with a finite initial time and this will
permit to formulate general criteria for the use of a quantum
transport equation in a transient regime.

The paper has the following structure. In Sec. II we give
basic definitions and notation, contrast the correlated and un-
correlated IC and identify the latter with the Keldysh initial
conditions.39 In Sec. III, we first interpret the finite-time pro-
cess in question with a process embedded in a host process
an preceded by a preparation stage. The related Schwinger-
Keldysh contours are defined. In Sec. III B, a proof is given
of the invariance of the NGF with respect to the choice if the
initial time. Sec. IV is the core part of the paper. The invari-
ance of the NGF is used to express the self-energy of the
embedded process including the initial condition terms in
terms of the self-energy of the host process. To this end, the
formalism of the partitioning in time is built up, in which any
function of time is split into two parts, a projection onto the
past �P� and onto the future �F�. This is first done for the
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propagator components of the NGF in Sec. IV A. The
double-time quantities have four partitions. Both diagonal
partitions obey the Dyson equation without modification
while the FP and PF partitions lead to equations which can
be identified with the renormalized composition rule for
propagators.40–42 By contrast, the correlation functions like
G� have a self-energy sensitive to initial conditions. The
partitioned form of G� is derived in Sec. IV B. It is the used
to obtain the self-energy of the embedded process, which is
compared with the results of Ref. 9. The remaining sections
are concerned with the physical consequences of the devel-
oped formalism. First, Sec. V invokes the Bogolyubov prin-
ciple of the decay of correlations. For the self-energy, it
means that all its components are negligible outside a strip
along the time diagonal in the double-time plane. Its width ��

is comparable with the Bogolyubov correlation time. In Sec.
V A, it is shown that for the IC terms of the self-energy this
implies that they are concentrated to a finite area of the ��

adjoining the point of initial time. This, in turn, allows to
show in Sec. V A that the NGF itself contains IC-dependent
terms attenuated at the rate of the GF relaxation time and
superseded by a term with a floating initial condition. Sec-
tion VI is concerned with the quantum transport theory for
processes starting at a finite initial time. For these processes,
Bogolyubov conjecture states that later than �� after the pro-
cess started, the process is governed by a closed transport
equation for the single-particle distribution. We use our re-
sults for the NGF to corroborate this conjecture. In the first
step, Sec. VI A, we show that for the precursor transport
equation, which is the point of departure for the NGF ap-
proach to quantum transport equations. The proof is com-
pleted in Sec. VI B devoted to deriving the reconstruction
equations of the quantum transport theory in the case of a
finite initial time and demonstrating that the IC-dependent
terms die out within the �� time after the start of the embed-
ded process. The reconstruction equations form together with
the precursor transport equation a closed system allowing to
formulate an exact approach to quantum transport and also to
obtain approximate transport equation in a systematic man-
ner. We discuss from this angle the generalized Kadanoff-
Baym Ansatz and show that it is too coarse to capture the
effect of initial conditions, being suited rather for the steady
asymptotic transport regime. In Sec. VI C, we take a broader
look on the transient transport and the NGF as an option for
its description, with emphasis on open systems.

II. NGF AND QUANTUM DYNAMICS

The dynamics of the system is defined by the full Hamil-
tonian H+U�t� consisting of the system Hamiltonian H and
an additive external disturbance U�t�. A dynamical process is
described by the statistical operator P�t� which is fully speci-
fied by its initial state PI at t= tI �an arbitrary equilibrium or
out-of-equilibrium state�.

The nonequilibrium Green’s function is defined in the
usual manner,4–6

G�1,2� = − i Tr�PITc���1�tI��†�1��tI��� �1�

with the Heisenberg field operators �, �† anchored at tI, and
the time-ordering operator Tc acting along the closed time

path C extending from tI to +� and back. To indicate the
initial time, we occasionally write GtI

�1,1�� instead of
G�1,1��. We will use this convention when working with
two initial times at once.

We represent the contour-ordered NGF, following
Keldysh,2,39 by a 2�2 matrix GF of real time, employing the
Langreth-Wilkins �LW� matrix4,43,44 having three compo-
nents, the less-correlation function G� and two �equivalent�
propagators, GA�1,1��= �GR�1� ,1��†. The Dyson equations
for the propagators have the form

GR,A = G0
R,A + G0

R,A�R,AGR,A, etc. �2�

The less component of the Dyson equation can be quite gen-
erally cast into the form9

G� = GR��GA,

�� = ���
� + ��•

� + •��
� + •�•

�. �3�

For later convenience, we use the more systematic notation
of Ref. 40 for the self-energy ��: The integrations in Eq. �3�
start at tI. The four terms have a varying degree of singularity
at the initial time, as indicated by circles. The open circles
indicate a time variable fixed at tI, the filled ones a time
variable continuous in �tI ,��. The regular term •�•

� �called

�̆� in Ref. 12� corresponds to the Dyson equation as it is
usually written for tI→−�, namely, G�=GR��GA. The
other terms have the form

���
��t,t�� = i��tI���t − tI

−���t� − tI
−�, ��t� = − iG��t,t� ,

•��
��t,t�� = ��

��t,tI���t� − tI
−� ,

��•
��t,t�� = ��

��tI,t����t − tI
−� tI

− = tI − 0 .
�4�

Two terms, ���
� and •�•

�, correspond roughly to the self-
energy for uncorrelated initial conditions. The remaining two
singular terms �famous �c, �c of Ref. 9� originate from the
initial correlations. They are equivalent to single-time con-
tinuous functions 	o

��t , tI�, �	
��tI , t�� dependent on tI as on a

parameter. For the correlated initial conditions, these two
functions must be determined in addition to the regular less
self-energy. To verify the uncorrelated IC limit of Eq. �3�, let
us write �� for •�•

� and use the uncorrelated, that is unper-
turbed, 
�tI�→
0�tI�= iG0

��tI , tI� to transform

GR
���

�GA → GR�i
0�tI��GA

= GR�G0
R�−1G0

R�i
0�tI��G0
A�G0

A�−1GA

� f�

and finally set ��•
� and •��

� to zero. Equation �3� becomes

G� = f� + GR��GA,

f� = �1 + GR�R�G0
��1 + GA�A� . �5�

This is identical with the famous form of the Dyson equation
with uncorrelated initial conditions for the correlation func-
tion given by Keldysh.3,4,39
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III. PROBLEM OF INITIAL CONDITIONS FOR NGF

As discussed in Sec. I, various methods have been devel-
oped, how to circumvent the difficult average in Eq. �1�. The
point of departure in our approach characterized as real-time
diachronous is the notion that any physically admissible ini-
tial state PI is an outcome of previous history �preparation�.
In order to employ this feature for determining future evolu-
tion of the system, we have to formalize the notion of the
past and the future with respect to a selected instant ��the
present� in the structure of NGF formalism. Then we will
continue the Green’s function from the time block of the
preparation stage to the “relevant” time block of the future
evolution described by Eq. �1�.

A. Start of a finite-time transient as a restart
of the host process

We turn to our basic task of determining explicit expres-
sions for the NGF with an initial time tI, at which the corre-
lated initial state is PI. As stated already, we restrict our
study to processes whose initial state coincides with the in-
termediate state at which an antecedent �preparation� process
has arrived at the selected initial time. Beyond that time, the
evolution continues as the dynamical process in question
�“measurement” or “observation”�. The two processes follow
coherently one after another and, consequently, form together
a united process. This is sketched in Fig. 1�a�. In particular, if
the preparation stage starts from an uncorrelated state at an
indefinitely remote past, t−�→−�, the united process can be
viewed as one of the Keldysh switch-on processes. Also
shown in Fig. 1�a� is the Danielewicz-Wagner contour, along
which the finite-time process in question is augmented by an
artificial process taking place on an imaginary time interval,
and again, the two partial processes have to be viewed as
coherent segments of a unique whole.

From a more abstract point of view, the interpretation of
the two stages as preparation and the physical �or measure-

ment� process is entirely subjective and depends on the spe-
cial importance ascribed to the given initial time. It is more
productive to think in terms of two processes differing only
in their time definition range. One is the long host process,
starting at some instant t−� from P−�, the other is a shorter
“embedded” process, which starts at an arbitrarily chosen
initial time. This alternative interpretation is presented in Fig.
1�b�. To stress the fluid nature of the “initial” time, we
change the notation to t0. This instant is elected to be the
present. The host process encompasses both the past and the
future with respect to t0 while the embedded process takes
place wholly in the future. Both processes describe the same
evolution beyond t0. This coincidence permits to buildup the
NGF of the short process as the future “partition” of the long
process. Once this is done, the embedded process may be
viewed as an independent “restart” process, which is being
restarted from a frozen initial state P0=P−��t0� at t0. The
influence of this initial state is incorporated through the con-
struction of the NGF for the embedded process; the many-
body state itself does not enter the formalism explicitly any-
where.

B. Invariance of the NGF with respect to the restart time

Now we will demonstrate that the NGF is invariant with
respect to the choice of the initial time. To this end, we
compare two nonequilibrium Green’s function differing by
their initial times and, hence, by their definition ranges Dt0

,
Dt−�

�Fig. 2�a��. We consider the less correlation function;
G� would be treated similarly and the R ,A components are
their combinations. We have

Gt−�

� �1,1�� = − i Tr�Pt−�
�†�1��t−����1�t−��� ,

Gt0
��1,1�� = − i Tr�Pt0

�†�1��t0���1�t0�� �6�

in the respective definition ranges Dt−�
�t , t�� t−�� and

Dt0
�t , t�� t0�.
The Heisenberg field operators are evolving from the re-

spective initial times according to the full many-particle uni-
tary evolution operator K�t , t��,

a �t
�→ C|} -∞ �→ C|} I

tI t t′t-∞

tI - iβ
Danielewicz�����

�
�
�
�
�
�

> >

∨

∨

<<

b �t
�→ C|} -∞ �→ C|} 0

t0 t t′t-∞

�
�
�
�

> >

∨
<< 1

FIG. 1. The NGF time contour and its extensions. The process
under study evolves along the Schwinger-Keldysh trajectory CI

starting and ending at tI. �a� It is augmented by a preparation stage
running between t−� and tI. The joint process has the C−� trajectory.
For comparison, the well-known extension �Refs. 9 and 10� by an
imaginary stretch ending at the formal “temperature” 
 is shown
and labeled “Danielewicz.” �b� Within any host process extending
over C−�, an arbitrary dividing time t0 defines an embedded process
along C0. �a� shows one special case with a particular physical
interpretation: t0 is identified with the initial time tI.

FIG. 2. �a� Definition ranges Dt−�
of the full process and Dt0

of
the restarted process are the first quadrants with the initial times
specifying their lower left corners, see Eq. �6�. �b� In the partition-
ing language the whole Dt−�

range is cut into four partitions at the
crossing point �t0 , t0�. The future-future partition coincides with the
restart process time range Dt0

.
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��1�t−�� = K�t−�,t���x�K�t,t−��, �†�1��t−�� = ¯ ,

��1�t0� = K�t0,t���x�K�t,t0�, �†�1��t0� = ¯ �7�

while the two initial states, over which the trace is per-
formed, are mutually related by

Pt0
= K�t0,t−��Pt−�

K�t−�,t0� . �8�

Introducing all these relations into the definition �6�, we
find that, in fact, the values of the two GF’s are identical over
the common definition range Dt0

and can be denoted by G�

without the time label,

G��1,1�� � Gt−�

� �1,1��, t,t� � t−�,

G��1,1�� � Gt0
��1,1��, t,t� � t0. �9�

The restart time may be an arbitrary time later than t−� and
the result �9� thus proves that the definition of the GF for an
embedded process is invariant with respect to shifting its
initial �restart� time t0.

IV. TIME PARTITIONING

Next, we employ the invariance, Eq. �9�, of the NGF to
relate the self-energies of the two processes. To achieve this
goal, we split the whole time domain of the host process at t0
into the past, the preparation period, and the future, the ob-
servation period. The latter coincides with the time domain
of the embedded process. The host NGF gets partitioned into
four blocks, as represented in Fig. 2�b�. The future-future
partition coincides with the time domain Dt0

of the embed-
ded NGF. We will make use of this to obtain explicit expres-
sions for the embedded NGF from the Dyson equation for
the host NGF by a technique we call time partitioning. This
technique will be made clear in the course of the derivations.
In other words, we develop in parallel the formal means
suited for resolving the second main question of the paper.

Consider a process starting at t−�. Let t0� t−� be the di-
viding time between the past and the future. The whole time
domain �t−� ,�� is divided into two parts, �t−� , t0� and �t0 ,��.
Any function of time can be split or partitioned into the
corresponding two components by means of projection op-
erators P ,F: with � being the unit step function, I the unit
operator in the space of single-particle states, we get

P�t,t�� = ��t0 − t���t − t−����t − t��I ,

F�t,t�� = ��t − t0���t − t��I ,

P + F = ��t − t��I � 1. �10�

Similarly, a regular double-time quantity X can be partitioned
to four quadrants of the two-time plane,

X = PXP + PXF + FXP + FXF .

Our aim will now be to obtain explicit expressions for the
partitioned NGF with help of the Dyson equation. This
would mean repeating the standard partitioning procedure

�see, for example, Ref. 17� for the matrix NGF. This system-
atic formal way will be described elsewhere. Here, we will
proceed by components, which are more transparent and lead
directly to relations having physical interpretation.

A. Time partitioning for propagators

The retarded quantities are nonzero only for t� t� and we
get PGRF= P�RF=0. The time diagonal blocks of the Dyson
Eq. �2� for GR then preserve its unpartitioned form,

PGRP = PG0
RP + PG0

RP · �R · PGRP , �11�

FGRF = FG0
RF + FG0

RF · �R · FGRF . �12�

This means that propagation starting and ending in the
past/in the future is closed in itself and is not influenced by
the complementary time domain. In particular, the retarded
self-energy for the embedded process coincides with that of
the host process within the embedded time domain Dt0

.
The remaining FP block of the Dyson equation for GR

has the structure

FGRP = FG0
RP + FG0

RF · �R · FGRP + FG0
RF · �R · PGRP

+ FG0
RP · �R · PGRP . �13�

By definition, the free propagator corresponds to a unitary
evolution. It thus satisfies the multiplicative composition law
�the “semigroup rule”�

G0
R�t,t�� = iG0

R�t,t0�G0
R�t0,t�� for t � t0 � t�. �14�

This may be rewritten as

FG0
RP = FG0

RF · LR · PG0
RP ,

LR�t,t�� = i��t − t0
+���t0

− − t��I �15�

on defining a time-local operator L whose time arguments
must be infinitesimally shifted, as indicated.

Introducing Eq. �15� into Eq. �13� and making use of Eqs.
�11� and �12�, we finally obtain

FGRP = FGRF · �LR + F�RP� · PGRP . �16�

With the time arguments written out explicitly, the equation
reads

GR�t,t�� = iGR�t,t0�GR�t0,t��

+ �
t0

t

dt̄�
t�

t0

dt�GR�t, t̄��R�t̄,t��GR�t�,t��

t � t0 � t�

.
�17�

Similar relations are obtained for GA. In the symbolic form,

PGAF = PGAP · �LA + P�AF� · FGAF , �18�

where LA= �LR�†.
This completes the time partitioning for propagators.
The resulting Eqs. �16� and �17� for GR may be compared

with their counterparts, Eqs. �14� and �15� for G0
R. The latter

represent a factorization of the GF commonly called the
semigroup property. It was necessary to invoke the factorized
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form, Eq. �15�, for the free propagator in order to derive the
Eq. �16� for the full propagator in which the semigroup fac-
torization is renormalized. The renormalization consists in a
nonlocal vertex correction to the time-local bare factorizing
vertex LR. This result for GR coincides with the renormalized
semigroup property previously reported in Refs. 40–42 in
connection with the reconstruction theorem and the nonequi-
librium Ward identity for NGF.

Here, it is linked with the partitioning and gives the for-
malism some physical content. The past and the future can-
not be cleaved apart at a sharp instant, except in the mean-
field approximation incorporating strictly the “singular,” that
is time-local components of the self-energy. The regular
double-time self-energy leads to blurring of the sharp time
borderline. The partitioning consists, in fact, of expressing
the whole propagator in terms of its two diagonal blocks,
past-past and future-future. These blocks are joined by the
diagonal, or off-diagonal blocks of the self-energy, as
needed. In explicit terms, the off-diagonal blocks mean that
the integration range is off-diagonal with the time arguments
of �R or �A mutually separated by the partition time t0.

B. Time partitioning for G�

The partitioning of G� is obtained from the four blocks of
the Dyson equation G�=GR��GA, Eq. �3� for the host GF.
We take advantage of the possibility of suppressing the label
t−�. The off-diagonal blocks of the propagators are substi-
tuted for by the partitioning expressions, Eq. �16� for GR and
the analog for GA, with the result,

PG�P = PGRP · �� · PGAP , �19�

PG�F = PGRP · �� · FGAF + PG�P · �LA + �A� · FGAF ,

�20�

FG�P = FGRF · �� · PGAP + FGRF · �LR + �R� · PG�P ,

�21�

FG�F = FGRF · �� · FGAF

+ FGRF · �� · PGAP · �LA + �A� · FGAF

+ FGRF · �LR + �R� · PGRP · �� · FGAF

+ FGRF · �LR + �R� · PG�P · �LA + �A� · FGAF .

�22�

In agreement with the general “causal” structure, an advan-
tage of the LW representation,4,43,44 each term contains just
one less factor surrounded by retarded factors from the left
and advanced factors from the right. This causal structure is
further underlined by the propagation from past to present
limiting the order of the P and F projectors. Just like for the
propagators, only the time diagonal blocks
FG�F , FGRF , . . . , PGAP enter the partitioning Eqs.
�19�–�22�, while the coupling of the two time domains is
provided by the off-diagonal blocks of the self-energy.

The unidirectional nature of the propagators leads to a
very different role of the past and of the future in the result-
ing partitioned expressions. Looking first at Eq. �19�, we see
that the correlation function restricted to the past does not
feel the future for an obvious causality reason. The same is
true for the propagators, Eq. �11�, and, hence, for the whole
NGF. Considering next the two off-diagonal blocks of the
NGF, we find that always just two of its three components
are nonzero. For the future-past block, these are FGRP �Eq.
�16�� and FG�P �Eq. �21�� while FGAP=0. Note that Eq.
�16� and the second term of Eq. �21� have an identical struc-
ture with the PP block of the GF in question linked with the
FF block of the propagator by means of the renormalized
vertex LR+F�RP. An essential additional term enters Eq.
�21�, however. As will be discussed below, Eq. �21� is inti-
mately related to the reconstruction equations known from
the NGF theory of quantum transport equations. The same
remarks hold for the PGAF, PG�F pair with necessary modi-
fications.

The host process and the embedded process each satisfy
their own Dyson equations, which define the respective self-
energies �t−�

R,A , �t−�

� and �t0
R,A , �t0

�. Our task will be to use
the invariance condition �9� to mutually relate the two sets of
self-energies, or, more specifically, to construct the restart
self-energies reflecting the initial conditions for the embed-
ded NGF at t0. First, as concerns the propagator self-
energies, we have already seen in Eq. �12� that they are in-
variant with respect to the choice of the restart time in the
sense of Eq. �9�. For the embedded particle correlation func-
tion, the Dyson equation

Gt0
� = Gt0

R�t0
�Gt0

A �23�

is identified with FG�F=FGRF�t0
�FGAF, see Fig. 2�b�, and

the self-energy is extracted from Eq. �22� as

�t0
� = F��F ] ] ]

+ F�� · PGAP · �AF + F�� · PGAP · LA
] ]

+ F�R · PGRP · ��F ] + LR · PGRP · ��F ]

+ F�R · PG�P · �AF + F�R · PG�P · LA + LR · PG�P · �AF + LR · PG�P · LA

�t0
� = �•�•

��t0
+ �•��

��t0
+ ���•

��t0
+ ����

��t0

. �24�

The nine terms of �t0
� correspond to the block decomposition �F��F , . . . , P��P� of the host �� by lines and to the

Danielewicz four parts of the self-energy in the Dyson Eq. �23� by columns.
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V. INITIAL CONDITIONS AND THE DECAY OF
CORRELATIONS

The outcome of the preceding formal section can be sum-
marized in two equivalent ways. As an answer to the general
question posed in this paper about separation of the past and
future within the NGF formalism, we have the partitioning
equations expressing the complete NGF for a host process in
terms of its PP and FF partitions, that is of the NGF for the
preparation stage and the observation stage, which are
coupled by the off-diagonal FP and PF partitions of the NE
self-energy. For the NGF propagator components, the equa-
tions are Eqs. �11�, �12�, �16�, and �18�. The four equations
for the particle correlation function are �19�–�22�.

The second, narrower, but physically central question
concerning the NGF of an embedded process, is answered
for the propagators by Eq. �12�, or, which is the same, by the
plain Dyson Eq. �2� with the understanding that the external
time domain is Dt0

. For the correlation function of the em-
bedded process, the Dyson equation is given by Eq. �23�
with the self-energy listed in Eq. �24�.

This last result, crowning in some sense our effort, does
not look very simple. It may be profitably used, however, in
conjunction with the assumption about a short-time range of
correlations—Bogolyubov principle of the decay of correla-
tions. We devote this and the next sections to analyzing this
conception and to indicating some areas of its use. In par-
ticular, we address in the next section the quantum transport
theory in the presence of correlated initial conditions.

A. Self-energy and the decay of correlations

For analyzing the initial conditions for the embedded
NGF if will be convenient to rewrite the restart Dyson equa-
tion, Eq. �23�, in the form45

Gt0
��t,t�� = �

t0

t

dt̄�
t0

t�
dt�GR��GA

�

t0

+ �
t0

t

dt̄�
t0

t

dt�GR��t0
� − ��

�
�

�GA

t � t0,t� � t0

�25�

with the FF block of the host self-energy �� singled out in
the first line. The difference �t0

� in the second line describes
the effect of the initial conditions. The resulting FG�F must
coincide with the expression following from the host Dyson
equation, Gt0

�=FGR��GAF. In the latter, the integration ex-
tends over the whole Dt−�

, while the restart Dyson equation
contains only the FF �. . .Dt0

� part of the integral involving
��. The initial conditions at the restart time t0 capture in a
condensed form the contribution of the three remaining ��

blocks, i.e., the integral over Dt−�
\Dt0

, to Gt0
�.

The IC correction �t0
� is identical with the last three lines

of Eq. �24�, from which it is apparent, how the integral is
folded down into the initial conditions. A substantial portion
is taken up by the uncorrelated IC term ���

�. This simplest
possible contribution to the finite-time initial conditions re-

sults in the coherently propagated initial one-particle density
matrix of the restart process, GR�t , t0�
�t0�GA�t0 , t�. It is in a
perfect harmony with the framework for genuine quantum
transport equations, that is, closed equations for the quantum
distribution function 
�t�. Of the other contributions to �t0

�,
two are the Danielewicz correlated IC terms ��•

� and •��
�.

The remaining one, •�•
�� •�•

�−�� specifies the initial cor-
rection to the host less self-energy. This last feature is natural
for the restart interpretation of an embedded process while its
meaning within the general NGF approach to initial condi-

tions is less certain.12 �In this reference, •�•
� is called �̆��.

The correlated IC terms of �t0
� are expressed in terms of

the host process explicitly, as given by the expanded form of
Eq. �24�. All these expressions, seven altogether, have a com-
mon structure. Both external times belong to the future while
the internal motion involves a virtual excursion of the system
into the past.

For example, one of the •�•
� terms is

�F�RPGRP��F��t̄,t��

= 	
t−�

t0

du	
t−�

t0

dv�R�t̄,u�GR�u,v����v,t�� . �26�

The virtual propagation takes place between u and v, entirely
in the past time domain, while past and future are linked by
the self-energy factors, whose time arguments are separated
by the restart time t0. The same is true of all other correlated
IC contributions to �t0

�, only in those containing a contact L
factor the corresponding inner and outer times are t0−0 and
t0+0, respectively. Thus �•��

��t0
reads

�•��
��t0

= F�� · PGAP · LA + F�R · PG�P · LA

= − i
	
t−�

t0

du���t,u�GA�u,t0�

+ 	
t−�

t0

du�R�t,u�G��u,t0�� . �27�

It is decisive for the actual role of initial correlations that
the off-diagonal coupling in all IC terms is mediated by the
self-energy: it suggests itself to invoke the Bogolyubov prin-
ciple stating that the temporal correlations in the system de-
cay within a period with a characteristic time �c �often called
the collision duration time in transport theory�. This principle
translates into the assumption6 that the host less self-energy
���t , t�� is negligible out of the strip �t− t���O��c� along the
time diagonal, and also that a similar formation time �Q ex-
ists for �R and �A. All components of the self-energy should
thus be concentrated to a strip

�t − t�� � O���� �� = O��c,�Q� . �28�

Then the following restrictions hold for the time variables
in Eqs. �26� and �27�, and, by the same token, in all corre-
lated IC terms,
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t0 + �� � t̄ � t0 � u � t0 − ��,

t0 − �� � v � t0 � t� � t0 + ��. �29�

These inequalities are important in two respects, as indicated
schematically in Fig. 3�a�.

First, the external times are restricted to an intersection of
two strips of a �� width flanking from the future side the
lines t= t0 and t�= t0 in the double-time plane. Thus, all cor-
related IC corrections are negligible outside this squarelike
region close to the intersection �t , t��= �t0 , t0�. This is an ex-
plicit consequence of the Bogolyubov principle. The parti-
tioning expressions for correlated initial conditions, like Eq.
�26�, are well suited for testing and analyzing the validity of
this important hypothesis. The four IC terms are concen-
trated to the following regions: •�•

� to the square �t0 , t0
+��� � �t0 , t0+���, ��•

� to its vertical side, •��
� to its horizon-

tal side, both crossing at �t0 , t0�, finally ���
� is concentrated to

the single corner point �t0 , t0�.
Second, as also shown in Fig. 3�a�, the inner �integration�

time variables are also restricted to similar strips, but now on
the side of the past. That means that the memory of the past
required by the correlated initial conditions need not reach

beyond t0−��. This is the gain of the restart formulation
contained in Eqs. �23� and �24� as compared with the host
Dyson equation: in Gt0

�=FGR��GAF, the integrations would
reach down to t−�.

B. Evolution of G�

The IC contributions to the resulting Gt0
� should also van-

ish with increasing time. To assess the rate of their attenua-
tion, we will consider the “typical” case governed by the
hierarchy of characteristic times,

�� � � , �30�

where � has the meaning of a quasiparticle lifetime. Because
t0+�� serves as an estimate of the upper limit of the integra-
tion range for the IC integral in the second line of Eq. �25�,
we see that

t − t0 � t − t̄ � t − t0 − ��,

t� − t0 − �� � t� − t� � t� − t0. �31�

This shows that for times t , t� well beyond t0+�� both propa-
gator factors in Eq. �25� have the lifetime � as an estimator
for their decay, cf. Fig. 3�b�, for the equal time case t= t�.
This holds for the uncorrelated part of the initial condition
and also for all correlation contributions to Eq. �25�. In gen-
eral, there is no reason for the correlation part of the initial
conditions to decay faster than the uncorrelated initial con-
ditions. We mention that because of opposing views found in
the literature.38 In any case, long after the onset of the �re-
start� process, the initial conditions die out, and the Dyson
equation becomes

Gt0
��t,t�� = 	

t0

t

dt̄	
t0

t�
dt�GR��GA t,t� � t0 + � . �32�

This estimate is valid for a general double-time argument
�t , t��, but also for the two times equal t= t�. This means that
the decay time for the initial density matrix 
0 is 1

2�. Thus,
the host self-energy alone governs the long time asymptote
of any embedded process, and the lower integration limits
may be shifted up, from t−� to t0.

VI. QUANTUM TRANSPORT WITH FINITE-TIME
INITIAL CONDITIONS

The problem of quantum transport for a given system is
completely solved, of course, once the particle correlation
function has been constructed. Here, we have in mind a so-
lution of the same problem in a narrower specific sense,
namely, by means of a quantum transport equation. Even
today, with the massive effort to master a direct solution of
the Kadanoff-Baym or equivalent equations for the NGF, the
possibility of using the simpler transport equations is appeal-
ing. On the one hand, both the construction and the solution
of transport equations is usually physically more transparent
and well controlled. On the other hand, a practical solution
of the transport equations is incomparably easier than a di-
rect attack at the NGF equations. The NGF formulation re-

t

t

0t
� ��

��� �

�
���

�
���

� �

u

v

( , )t t�� ��

0 0( , )t t

( , )t t

a

b

FIG. 3. Double time plane. The gray strip along the equal-time
diagonal corresponds to the condition �28�. Outside the strip all
self-energy components should be practically zero. �a� The time
axes crossing at �t0 , t0�, cut the plane into partitions; the semiaxes
rimming the time range of the embedded process �future-future
quadrant� are labeled t̄ , t�, the opposite ones pointing into the past
are labeled u ,v—see Eqs. �26� and �27�. By the condition �29�, the
IC corrections to �� are restricted to the shaded square anchored at
�t0 , t0� or its edges, as shown by labels. The integration ranges in
Eqs. �26� and �27� are similarly restricted to the white square and its
boundaries. Details are given in the main text. �b� The running time
for the one-particle density matrix is t= t�. If selected far enough
from t0, t� t0+2��, both propagators GR�t , t̄�, GA�t� , t�� in the IC
term of Eq. �25� will already be, by Eq. �31�, in the quasiparticle
mode and decaying at the rate �. The generalized collision terms in
the precursor equation have a 1D integration range along the time
diagonal between �t , t� and �t−�� , t−��� as shown by a white arrow.
The intersection of this stretch with the square of nonzero IC cor-
rections to the self-energy is thus empty for t� t0+2�� and the IC
terms in the precursor equation vanish in agreement with the
Bogolyubov conjecture.
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mains, of course, as the rigorous reference framework, and,
in our approach, also as the starting point, from which the
transport equation is obtained by a sequence of approximate
steps. We adhere to the Ansatz philosophy, according to
which the transition NGF→quantum transport equation is
separated from a specific physical approximation for the
many-body aspects of the problem. The particular problem
we will address is the transient quantum transport with finite-
time initial conditions. As will emerge, our discussion will be
based on the time-partitioning equations. It may be said that
the following is a first nontrivial application of the formalism
on a physical question.

We will not return to the general discussion presented in
Sec. I. We only summarize that for the transient case, we
build a transport equation for the one-particle density matrix
that is the distribution of true bare particles. Instead of using
the Wigner time variables, our formalism has a strictly causal
structure. We will thus not use a quasiclassical expansion,
although the decay time of correlations should be the shortest
of all characteristic times. Finally, the initial condition terms
fading away during the transient should be incorporated. In
this connection, special attention will be paid in to the
Bogolyubov conjecture which states that a process starting
from a correlated nonequilibrium state at a finite time enters
the kinetic stage of evolution immediately after the initial
correlations decay, that is beyond the initial period lasting ��.
In the kinetic regime, the evolution is governed by a closed
quantum transport equation for the one-particle density ma-
trix. In a broad outline, this follows from the general prin-
ciple of the decay of correlations. One purpose of this section
is to look into this relationship by formal means developed in
the preceding sections and to modify and extend the standard
procedure of deriving the quantum transport equations
�called also transport equations for short� in order to incor-
porate the finite-time initial conditions. In particular, we
demonstrate that for any initial state generated by a prepara-
tion process, the Bogolyubov conjecture can be proved pro-
vided a finite �� time exists.

A. Precursor quantum transport equation
and the Bogolyubov conjecture

Our analysis will proceed in two steps. First, precursor
transport equation will be considered in this section. Section
VI B will be devoted to its reduction to a quantum transport
equation proper.

The precursor transport equation �known also as the gen-
eralized Kadanoff-Baym equation� is the starting point on the
way from NGF to transport equations. It is a differential
equation obtained from Eq. �23�, and Eq. �2� written as
�GR,A�−1= �G0

R,A�−1−�R,A. It already has a structure closely
related to transport equations,

G0
−1G� − G�G0

−1

= �RG� − G��A + − GR�� + ��GA + − GR�t0
� + �t0

�GA.

�33�

At equal external times, t= t�, the left-hand side �lhs� of the
last equation represents an unrenormalized drift of the one-
particle density matrix 
,

lhs of �33�→
t=t��


�t
+ i�H0,
�−. �34�

This has the form proper for a quantum transport equation in
which H0�t� is the mean-field one-particle Hamiltonian. The
“generalized collision” terms on the right-hand side involve
double-time less quantities even for t= t�, however. The re-
lated integrals extend only to the past because of the pres-
ence of the propagator factors. The one-dimensional �1D�
integration range is restricted by �� again, as sketched by a
white arrow in Fig. 3�b�. The last two generalized collision
terms take the initial conditions into account explicitly and
their integrand may be nonzero only in the square t̄ , t�� t0
+�� of Fig. 3�a�. The intersection of this square with the
integration range thus becomes empty as the running time t
exceeds t0+2�� and the initial conditions do not enter any
more. This is a formal expression of the Bogolyubov conjec-
ture for the precursor equation. The remaining terms depend
on the initial conditions implicitly and their form becomes
the same as in the case without initial conditions in the same
time region. To achieve the quantum transport equation
proper, another standard step is needed, in which all less
quantities entering the generalized collision terms will be
replaced by expressions involving only the single time dis-
tribution of particles 
.

B. Reconstruction equations and the problem of quantum
transport equation

In this section, we continue with the derivation of quan-
tum transport equation from the NGF equations with finite
initial time t0.

We first summarize the method of generating a quantum
transport equation from the precursor transport equation
standard for the Keldysh initial conditions at t0→−�: �1� the
double-time G��t , t�� is replaced by an expression involving
only its time diagonal 
�t�=−iG��t , t� and propagators, �2�
this expression is also introduced into the self-energy, for
which a self-consistent approximation specifying the self-
energy in terms of the Green’s function is assumed. The re-
sulting transport equation depends on the approximate re-
placement. The historically first one is the famous Kadanoff-
Baym Ansatz,1,4 schematically G�= 1

2 �
 ,GA−GR�+. We will
concentrate on the generalized Kadanoff-Baym Ansatz,4,37,38

G� = − GR
 + 
GA. �35�

This approximation has a systematic place in an exact
scheme for a quantum transport equation employing the re-
construction equations 4,6,37

G��t,t�� = − GR�t,t����t��

+ �
t�

t

dt̄�
−�

t�
dt�GR�t, t̄ ��R�t̄,t� �G��t�,t��

+ �
t�

t

dt̄�
−�

t�
dt�GR�t, t̄ ����t̄,t� �GA�t�,t��

G��t,t�� = ��t��GA�t,t�� + ¯

t � t�

t� � t . �36�

CORRELATED INITIAL CONDITION FOR AN EMBEDDED… PHYSICAL REVIEW B 81, 235116 �2010�

235116-9



The name symbolizes that the two halves of Eq. �36� to-
gether permit to reconstruct full G� from 
, in other words,
to reconstruct a full double-time function from the knowl-
edge of its time diagonal. If the integrals were neglected, the
reconstruction would be immediate, but approximate: Eq.
�36� would become just the generalized Kadanoff-Baym An-
satz, Eq. �35�.

For the present task, we need to extend the notion of
reconstruction equations also to the case of finite-time initial
conditions, specifically for the embedded �restart� process.
The desired equations are in general a consequence of the
Dyson equation, specifically of Eq. �25� here. The time par-
titioning leads to the result almost without effort. First, the
partitioning equations for the off-diagonal blocks, Eqs. �20�
and �21�, are adapted by renaming t0� t−� and t�� t0. Sec-
ond, consider, say, the FP block. The times involved are
ordered as t�� t�� t. The reconstruction equation is obtained
by letting the lower two time variables coalesce while keep-
ing their order: t�− t�→0+0. The partitioning time t� be-
comes sliding together with t� but this poses no difficulty. We
get

Gt0
��t,t�� = − GR�t,t����t��

+ �
t�

t

dt̄�
t0

t�
dt�GR�RGt0

�

+ �
t�

t

dt̄�
t0

t�
dt�GR��GA

+ �
t�

t

dt̄�
t0

t�
dt�GR��t0

� − ���GA

t � t� � t0

.
�37�

The result for the complementary PF block is analogous, just
as in Eq. �36�. If we did not single out the IC terms in Eq.
�37�, it would look almost identical with Eq. �36�, except for
the integration limits. The point is, of course, that the IC
terms compensate for the truncated integration limits of the
host process.

It is interesting to compare the behavior of the full Dyson
equation with the reconstruction equations. The last integral
in Eq. �37� involving the initial conditions is similar to its
analog in Eq. �25�, the integration area is different, however.
While it is a whole rectangle with the corners �t0 , t0� and
�t , t�� in the Dyson equation, it only extends over its upper
part with the lower left corner shifted to �t� , t0� for the recon-
struction equation. As a consequence, as soon as t�� t0+��,
the IC term in the reconstruction Eq. �37� vanishes. We have
seen before that the characteristic time for such vanishing in
the full Dyson equation is rather �. This can be understood as
follows. The Dyson equation is actually an explicit formula
for Gt0

� and the initial conditions are bound to enter it explic-
itly. By contrast, the reconstruction equations are true inte-
gral equations, involving the initial conditions in an oblique
manner and imposing them on Gt0

� as on a solution in a
successive manner.

This contrasting behavior illuminates the transport equa-
tion alternative for generating the full G� correlation func-
tion. In an exact version of this transport approach, recon-
struction equations are not standalone equations, but one part
of a linked twin process whose other constitutive part is a
transport equation obtained in an iterative solution cycle
from the precursor transport equation: Gt0

� is substituted from
the reconstruction equations, the transport equation is solved
for the density matrix 
�t� and this in turn enters the recon-
struction equation as an input.

The initial conditions enter this process both in the recon-
struction equations and in the precursor transport equation
explicitly, but in both cases only within the early period of
time, t� t0+��. Altogether, a formalism for treating transient
processes results, which is different for the short initial time
interval �t0 , t0+���, and for the rest of the process: all initial
conditions are built in during the initial formation period,
subsequently they are propagated by the dynamics of the
process at later times. There are two consequences. First, the
differing roles of the initial conditions in the Dyson equation
and the quantum transport equation context become harmo-
nized. Second, the outlined transport equation scheme fully
corroborates the Bogolyubov conjecture described in Sec.
V A.

Finally, we are in the position to discuss, how the finite-
time initial conditions affect the possibilities of an approxi-
mate direct construction of a quantum transport equation
based on the nonequilibrium Green’s functions. In other
words, of shortcutting the �reconstruction eq.�
precursor transport equation� cycle. A popular method has
been based on the GKBA, Eq. �35�. This is an approximation
neglecting the integral terms in the reconstruction equation.
If all corrections to GKBA are neglected, this also includes
the initial correlations. The GKBA itself is insensitive to the
initial correlations, that is, it is too coarse to take them into
account. Combined with the precursor transport equation, it
yields a closed transport theory which is still not free of the
initial correlations inherent to the generalized scattering
terms, and which is not really consistent in this sense. How-
ever, no quantum transport equation theory has the ambition
to provide a detailed description of short-time correlations,
as this is precluded by the use of the Bogolyubov principle
and by an asymptotic long-time nature of the transport equa-
tion, which are at its basis.

C. Note on transport in open systems

We conclude the discussion of various approaches to elec-
tronic quantum transport by returning to the remarks on the
time-variable environment of the electron subsystem. These
general comments need not be repeated here; the important
point is that, in addition to the internal nonequilibrium dy-
namics of electrons driven perhaps by external fields, there
may be expected important effects of a changing environ-
ment. Consider a suddenly opened thermal link between the
system and a phonon bath. This will have an immediate in-
fluence on the electron Green’s function, which must adapt
to the new decay channels which will cause a loss of coher-
ence of the propagation, reduce the relaxation time, etc. This
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process of adaptation will be gradual, having the character of
a transient. It is clear that the time-partitioning formalism is
ideally suited for such process: the preparation stage is with-
out the thermal contact and it defines the initial state for the
follow up, the process of relaxation of the electron sub-
system induced by the suddenly attached thermal bath. We
have thus at our disposal a Green’s-function formalism par-
allel to the Nakajima-Zwanzig projection method20 or to the
path-integral formulation of Refs. 19 and 21, both developed
within the density-matrix technique. We have treated in this
manner a similar situation for a mesoscopic molecular
bridge24 with the electron leads suddenly switched on or off.
In this case, the switching is accompanied by exchange of
particles, in addition to the exchange of energy. The details
are different for the two processes but the basic structure of
the equations is the same. Namely, it turns out that it is
possible to construct the transient Green’s function from the
two asymptotic steady-state Green’s functions, ON and OFF,
as from building blocks. The technique is reminiscent of the
well-known matching of surface Green’s function, only it
takes place along the time coordinate rather than in space, in
the direction perpendicular to the surface. Obviously, this
straightforward approach is restricted to the case that the
electron transient does not induce a back reaction in the res-
ervoirs. A systematic treatment of this more general physical
situation is a challenging theoretical task.

To conclude this brief discussion, there is a possibility of
a uniform treatment of transient processes induced by exter-
nal fields and by changes in the environment of the system.
This is achieved by reformulating the complex initial condi-
tions for the many-particle state in terms of the history of its
single-particle Green’s function, and a consistently con-
structed description of the subsequent transient evolution.

VII. CONCLUSIONS

The main results of this paper include: �1� the method of
partitioning in time, which permits to relate the NGF and
their Dyson equations for a host process and for its compo-
nents projected onto the past and the future with respect to an
arbitrarily selected dividing time. �2� The host process may
be thought as composed by the preparation process in the
past and by the measuring process in the future, so that mea-
surement starts from an initial state created by the prepara-
tion process; it may be arbitrarily out of equilibrium and
incorporate all correlations in the many-body system. The
NGF then starts from a correlated initial condition prepared
in a controlled manner. �3� The partitioning equations are
intimately related to the renormalized composition rule for
propagators, to the reconstruction equations for the particle

correlation function and, by this, also to the nonequilibrium
Ward identity,41,42 although the latter aspect was not dis-
cussed here.

�4� The time partitioning is useful for systems, in which
the decay time for correlations is short in accordance with
the Bogolyubov principle: the past and the future of the host
process are coupled only over the period on the order of the
correlation time around the dividing instant �present, initial
time for the measurement process�. �5� These results on the
NGF level permit an exact general formulation of the quan-
tum transport equations with correlated initial conditions.

For the future work, we may see two broad directions: �1�
to obtain a direct NGF method of treating transients with
correlated initial states �NGF solver�, the partitioning tech-
nique should be combined with suitable preparation pro-
cesses, in particular, the switch-on processes generated from
the Keldysh initial condition and yielding both equilibrium
and nonequilibrium initial states for a transient. The parti-
tioning method will serve to transform the general Keldysh
method into a building-block scheme.

�2� There is a possibility of a uniform treatment of tran-
sient processes induced by external fields and by changes in
the environment of the system, contributing to the NGF de-
scription of open systems. The progress along these lines will
depend of developing the ways on incorporating the back
reaction of the �imperfect� baths and reservoirs composing
the environment.

�3� The present exact framework for transport equations
can be used to develop approximate transport equations for
transients starting from a correlated initial state in a con-
trolled way. The only general requirement will be that the
correlations decay at a rate faster than any other change in
the system. A consistent transport scheme will then describe
the transient in three stages: first, the decay of correlations
ending with formation of an effective uncorrelated initial
condition. The ensuing kinetic stage will be described in
terms of a causal Ansatz, possibly improved over the GKBA.
The whole kinetic stage will be further divided into the early
period with the initial condition still acting and the true ki-
netic stage with no memory of the initial state.
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